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The notation in this tutorial aligns with the Computer Integrated Surgery
course at Johns Hopkins University, taught by Russell H. Taylor. Minimal
linear algebra is assumed for the main text. Proofs assume familiarity with
basic graph theory.

1 Introduction

Frame transformations are often the cause of confusing, frustratingly simple
errors in computer integrated surgery. For beginners, developing the intuition
to answer the question, “is this the A to B transform or the B to A transform?”
can take some time, especially when the meaning of “A to B” may vary based
on convention. In this tutorial, we will establish a consistent notation and
vocabulary for talking about points, frames, and the transformations among
them, which reflect the graph-like structure of any tracking setup. We also show
how to translate from a problem statement, which may use informal language to
describe these transformations, to a rigorous description of the problem, suitable
for writing a computer program.

2 Frames and Points
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First, let’s define precisely what we mean by “frame,” “point,” and “transform.”
For this tutorial, we will constrain ourselves to points and frames in 3D.

Definition 2.1. A frame is a basis for numerical measurements of object lo-
cations, orientations, or poses. It can be thought of as a virtual object floating
in physical space.

Definition 2.2. A point u, is a singular location in space. It can be measured



relative to a frame A with a 3-vector:!
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Figure 1: A point u as measured in frame A.

Definition 2.3. An orientation is measured by a rotation R € SO(3). There
are several convenient ways to describe the rotation group SO(3) in a given
frame A. We will use rotation matrices R4 € R3%3.

Together, a location and an orientation fully describe the degrees of freedom
for a rigid body in 3D Euclidean space. The combination is often referred to
as a “pose,” and it is the same information needed to describe a second frame
B. Thus, a “pose” can be thought of as a measurement of a frame, or a frame
transformations.?

Definition 2.4. The “A from B” frame transformation F 45 is a measure-
ment of frame B’s pose with respect to frame A. It consists of a rotation and a
translation

Fap = [Rap,pas| (2)

such that for a given point u,

uy = Fapup = Rapup + paB (3)

as in Fig. 3. 3D frame transformations are elements of the special Euclidean
group with n = 3: SE(3).

It is important to ensure consistency between notation like Equation 2, frame
transform diagrams like Fig. 2, and the vocabulary we use to talk about them.
Here, we use the notation F 4p for frame transformations because, mathemat-
ically, these are left-hand-side operators.>A point u measured in some frame

LFor notational convenience, frame subscripts are often dropped in favor of a, b correspond-
ing to measurements of the same point u in frames A, B respectively. To avoid confusion, in
this tutorial, we will always refer to a physical point with the same letter, using a frame
subscript to specify which basis.

2The following terms are often used synonymously to refer to frame transformations:
“pose,” “frame transform,” “rigid body transform,” “transformation,” or simply “transform.”



Fip = [RaB,paB]
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Figure 2: The “A from B” frame transformation F 45 = [Rap, pas]-

Figure 3: A frame transformation of a point u. If up is the measurement in
frame B, and F 4p is known, then uy = F 4gup.

B is transformed as F4pup, where the right-hand subscript of the transform
matches the subscript of the point. Otherwise, the result is nonsensical (and
will likely cause confusing behavior in your program!). Compositions of frame
transforms behave similarly. In order for F4pFcp to make sense, we must
have B = C'. In essence, adjacent frames must match when multiplying frame
transformations and points, and the result maps between the outer frames:

FipFpo =Fac. (4)

We call F 45 the “A from B” transformation, because as an operator, F 4p
takes in measurements of points in frame B and returns measurements in frame
A. So why not call this the “B to A” transform? Or, as in quite a lot of
source code, the B2A transform? The reason is that “A from B” reads from
left to right in the same order as F 4, avoiding so much confusion. Saying “A
from B” makes clear how the transformation operates: it takes a measurement

3In practice, you may see F 4p abbreviated to Fp. This is acceptable for convenience,
particularly when manipulating equations by hand, since F 4p is the measurement of frame
B in frame A, just as uy is the measurement of point u in A is uy. However, this intro-
duces a possible ambiguity between the component of a transformation, such as pap, with
a measurement of a point p in a frame A: p4, and so in this tutorial we maintain both
subscripts.



from frame B to a measurement in frame A, while maintaining consistency in
our left-to-right ordering. Using this convention when naming variables, e.g.
A_from_B, will make code easier to read, since the adjacency rule carries over,
and more likely to be correct on the first try.

2.1 Frame Transformation Diagrams

Frame transformation diagrams are an informal, helpful tool for understanding
the relationships in a given tracking setup. Fig. 2 is a simple diagram, where
the point v is measured in frame B, and B is measured in frame A. The
diagram uses arrows to signify these measurements, following the same left-to-
right convention as the notation thus far. If Fp is the “A from B” frame
transform, then its arrow starts at frame A and ends at frame B, as in Fig. 2.
This is often confusing, because the arrow in the diagram starts at A and ends
at B, but F 4p maps measurements to frame A from frame B. For this reason,
when talking about arrows, we will say the arrow “starts” and “ends,” reserving
“to” and “from” for the frame transformation as a mathematical operator. With
this vocabulary, we eliminate a single point of confusion while maintaining the
many advantages of drawing frame transform diagrams with arrow directions
matching the left-to-right ordering in F45 and “A from B.”

One of these advantages has to do with constructing the frame transforma-
tion. If o is the point at the origin of B, and o4 is the measurement in frame
A, the translational component of F 45 is simply 04. Thus the arrow in Fig. 4
representing o4 (left) starts at the same frame and ends in the same location
as the arrow representing F 45 (right). Similarly, if R4 is the rotation describ-
ing frame B’s orientation in frame A, then the rotational component of F 45 is
simply R 4.

Fap = [Rap,PaB]
where RAB <~ RA

PAB <04

Ra

Figure 4: Constructing a frame transform.

Further advantages of drawing frame transformation diagrams in this man-
ner become clear as tracking setups become more complicated. With a little for-
malization, these diagrams can help us understand measurements across a chain
of frame transformations. In the following section, we will use the powerful tools
of graph theory to outline the rules for dealing with frame transformations.



3 Reference Graphs

We will formalize frame transformation diagrams as “reference graphs” so that
we can define the rules by which these objects operate, and how we can use
them to recover the desired information.

Definition 3.1 (Reference Graphs). A reference graph is a connected, di-
rected graph G = (V| E), representing measurements of points and frames in
physical space, that satisfies the following;:

e The nodes V are partitioned into frames F and points &. That is, V =
F UU, where U is the disjoint union, and F,U are both nonempty.

e Every point node u € U has no outgoing edges, or out-degree 0. Precisely,
? (v,w) € E such that v = u.

e There is a measurement uy of a point v in a frame A iff there is an edge
(A,u) € E connecting the corresponding nodes.

e There is a measurement F 45 of the “A from B” frame transformation iff
the edge (A, B) isin E.

e There is a one-to-one measurement map ¢ : E — SE(3) UR? that
associates edges in F X F with frame transforms and edges in F X U to
point measurements.

Fap

€y = (A, B)

B
) nem
V ={A4,B,u}
E ={ep,e1}
A G =(V,E)

Figure 5: A simple frame transformation diagram (left) and its corresponding
reference graph (right).

Don’t confuse the frames and points themselves, which are nodes in the
graph, with the measurements of those frames and points, which correspond
to edges. Remember, a “frame” is just an abstract object floating in physical
space, with 6 degrees of freedom, and points are similarly abstract locations in
physical space with 3 degrees of freedom. We can create sets of these objects,
but we cannot (in good faith) associate them numbers until we have measured
them in a separate frame of reference. Hence, the frame or point in physical



space is the node, and its measurement is really just a relationship (edge) with
another node.
The measurement map ¢ is just the association of edges e € F with numerical
measurements, which are elements of SE(3) or R3.
@(e):{FAB ?fe:(A,B)e]-"x]-" )
uy ife=(Au)eFxU

Based on the definition of G, this is a complete definition of ¢. In general, the
definition of reference graphs and ¢ can be extended to include other objects
of interest, such as point clouds, triangle meshes, camera projections, and non-
Euclidean manifolds, but here we will restrict ourselves to points and frame
transforms in 3D Euclidean space.

The reference graph G has some useful properties, which help us determine
whether a given object can be measured in a given frame, and how to obtain that
measurement from the given quantities (assuming no error). In the following
section, we will provide two simple theorems that define how one should deal
with (1) inverse transformations and (2) kinematic chains, which are really just
paths on the reference graph.

3.1 Inverse Transformations

Theorem 3.2 (Inverse Transformations). If A, B € F, (A, B) € E, and ¢(e) =
Fap = [Rap,PaB]|, then the reverse edge (B, A) is also in E, and

#((B,A)) =F i = [Ryp, ~Ryppas] (6)
Proof. 1t suffices to prove that if F 45 is known, then Fp4 is also known, and
is as given.
Suppose
us = Fapup = Rapup + pas. (7)
Then
up =R 5(ua — pas) (8)
=R pus — R ;pas (9)
= [Ryp, ~RpPaB]ua (10)
— Fhus (11)
This is precisely the definition of the “B from A” transformation, Fg4. O

Thereom 3.2 provides a useful method for obtaining the desired transform,
when only its inverse is known. Essentially, the inverse operation flips the
subscripts of a transform, so Fz}gu 4 makes sense according to our earlier rule,
because the right-hand frame of Fﬁ; = Fp4 is frame A, which matches uy.

Let’s make this a little more concrete with a simple example, which can
be done by hand. Remember, rotation matrices are orthonormal, which means
R~!=RT.



Problem 3.3. Suppose a tracked patient frame B is measured relative to the
tracker frame A to be at

0 1 0 1
FABZ[RAB,[)AB]Z 0 0 -1 s 2 . (12)
-1 0 O 3

If the tip of a surgical instrument is measured at us = [4,5,6]7 in the tracker
frame, what is the same point’s measurement in the patient frame B? See Fig. 6.

Fiap=||0 0 —1],]|2

Figure 6: Find the measurement of the point u in the anatomical frame B, given
F AB and u A-



Solution 3.4. Our goal is to find ug. Since we know u4, we need to find the
frame transformation Fp4 so that

ug =Fpauyu. (13)

Fp4 is not given. Looking at the reference graph in Fig. 7 (left), we know from
Theorem 3.2 the edge (B, A) is in the graph, however and its corresponding
frame transform is given by leB.

—— —

Figure 7: The reference graph and solution for the problem.

up = Fpauy = F pua (14)
= [R5, ~Rppaslua (15)
=R, pua— R ppas (16)
o 1 0174 0 1 01'Nn
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In this example, we used the concept of reference graphs in a very minor
way, namely to have a vocabulary for how the inverse frame transformation op-
erates on points. However, you might notice that the end result ug = F;l}guA
corresponds to a series of connected edges on the reference graph, namely
{(B,A),(A,u)}. That is, to find the measurement ug, we have found a directed



path starting at the node B and ending at u, then multiplied the corresponding
mathematical objects in the same order. This is no coincidence, and it leads us
to the primary advantage of using reference graphs to think about coordinate
frame transformations.

3.2 Kinematic Chains

Theorem 3.5 (Kinematic Paths of Points). Given a reference graph G = (F U
U, E), the measurement us of a pointuw € U in a frame A € F can be determined
if G contains a directed path Pa_,,, = {eg,e1,...,en_1} starting at A and ending
at u. Moreover,

uy = p(eg)p(er) - plen—1). (21)
Put another way, if
PA~>u = {(Aa A1)7 (A17 A2)a B (An727 Anfl)a (Anflz u)} (22)
then
U—A:FAAlFAlAZ"'FAn,gAn,luAn,y (23)

Thus we have a simple rule for obtaining the measurement of a given point in
any frame: find a path starting at the frame and ending at the given point and
compose the transforms along the way.

The proof of Theorem 3.5 is included here for completeness, but the reader
may skip ahead to Section 3.2.1 without too much concern. It hinges on the
notion of equivalent reference graphs. These are reference graphs which dif-
fer in their measurements but ultimately describe the same set of points in
physical space. As a simple example, given any reference graph G, 1 can
create an equivalent reference graph G’ by eliminating an edge {(A,u)} and
still preserve all measurements by adding a “dummy” frame B along with
new edges (A4, B), (B,u), and define a new measurement map ¢’ such that
' ((A,B)) =1L ¢ ((B,u)) = ¢((4,u)), and ¢’ = ¢ otherwise.

Formally, let ~ denote this equivalence relation on reference graphs, which
describe the same points in physical space.

Definition 3.6. If G = (FUU,E),G' = (F'UU',E’) are reference graphs,
then G ~ G’ iff U =U" and FNF' # 0.

That is, every point measured in G is also measured in G’ at the same loca-
tion, and the graphs share at least one frame in common. We shall now prove
Theorem 3.5, using induction on the path length n, by constructing an equiv-
alent graph where the path P4_,, is contracted to a single edge (A, w). In this
proof, we will use the somewhat cumbersome notation for a measurement in one
reference graph [ua], to show that it is equivalent to the corresponding mea-
surement in another, but this notation will be unnecessary once the equivalence
is shown.



Proof. In the n =1 case, Py, = {(4,u)}, p((4,u)) = uy by definition.

In the n = 2 case, G contains P4, = {(4, A1), (A1,u)}. We claim there is
an equivalent reference graph G’ formed by removing the (A, A1) edge from the
path:

G' = (V.(E\{(A1,u)}) U{(A, u)} (24)
We claim G’ ~ G if ¢’ is defined as
1oy Jel(A AD)e((Ar,u) if e = (A,u)
Pl = {cp(e) otherwise (25)

This fact follows from the definition of the frame transformation, since the
measurement u4 is the same in both graphs:

[uale = ¢'((4,u)) (26)
= ¢((A, A1) p((Ar,u)) (27)
= FAA1UA1 (28)
= [uale (29)

by the definigion of F 44,. Thus, the measurement of the point is the same in
both graphs, and G’ ~ G.

In the n+ 1 case, assume the theorem holds for the nth case. Then Py_,, =
{eo,€1,...,€n_1,€,}. Since every node in U has out-degree 0, every edge e €
Pa_,, must start at a node in F. By the definition of a path, then,

i € FxFYie0,1,...,n— 1 (30)

That is, every edge in the path ends at a frame, except the last. Denote e,,_1 =
(An—la An)7 €n = (Anau) Then7

PA*HL = {Qanlw"7en72a(An717An)7(An7u>} (31)

Following the same graph operation in the n = 2 case, contract the path by
removing the (A,_1, A,) edge, and constructing ¢’ similarly. Then we have an
equivalent reference graph G’ with an n-path starting at A and ending at w.
From the inductive hypothesis,

[ualer = ¢'(e0)¢’ (1) -+ ¢’ (en—2)¢’ ((An—1,u)) (33)

= ¢(e)p(e1) - plen—2)ua (34)

= p(eo)p(er) - p(en— 2)FA,L 1A, 4, (35)

= p(eo)p(er) - plen—2)0((An—1, An))o((An, u)) (36)

= [uag (37)

which is the n + 1 claim. O

10



Thus, we have established the usual relationship, namely that kinematic
chains ending at points are formed by composing the frame transformations
along the path in the reference graph. A similar fact holds for measurements of
frames.

Corollary 3.6.1 (Kinematic Paths on Frames). Given a reference graph G =
(FUU, E), the measurement Fap of a frame f € U in a frame A € F can be
determined if G contains a directed path Pa_,g = {eg,e1,...,en_1} starting at
A and ending at B. Moreover,

Fap = p(eo)pler) -+ plen—1). (38)

Proof. Tt suffices to prove that any given point measured in the graph G’ formed
by contracting Pa_,p to a single edge (A, B) with

¢'((A, B)) = ¢(eo)p(er) - - plen—1) (39)

is the same point measured in G. This clearly holds for any point not mea-
sured by G in B. Then consider an arbitrary point u with (B,u) € E. From
Theorem 3.5, we have the desired claim. O

In order to avoid the construction of endless reference graphs which are
equivalent but reduced in the manner above (and therefore less reflective of the
original measurements), it is convenient to extend the definition of the measure-
ment map ¢ to cover paths on the graph in a recursive manner.

Fag lfl‘:(A,B)E]:XJ—"
p(x) =< uy ifx=(Au)e FxU
wleg)pler) - - plen—1) if x ={eg,e1,...,en—1} is a path on G

(40)

3.2.1 Frame Composition Formula

Although we have shown that the composition of frames results in the desired
measurement, we have not given a formula for composing frames unless they
are attached to points. We will do so now for the composition of two frames,
from which the composition of arbitrary numbers of frames can be derived.

Corollary 3.6.2 (Frame Transformation Composition). The composition of
two frame transformations F g, Fpc is

Fic =FapFpc = [RapRpc,Rappsc + pasl. (41)

Proof. Let uc be the measurement of some point in frame C. Then according

11



to the kinematic path,

uy = FapFpcuc (42)
=Fap(Rpcuc +pao) (43)

= Rap(Rpcuc +psc) +Pas (44)

= (RapRBpc)uc + (RappBc + PaB) (45)

= [RapRpc,RappBc + pasluc (46)

O

It is worth taking a moment to confirm that this composition formula makes
sense with respect to the points being manipulated. Recall that pp¢ is equiva-
lent to the measurement of the origin of frame C' as measured in frame B. Then
RaspBc + PaB = Fapppic is just the origin of C' measured in frame A, as we
would expect.

4 Summary

To summarize, the first approach to solving tracker problems in computer inte-
grated surgery is as follows:

1. Identify the points and frames in the problem as nodes on a reference
graph.

2. Identify the known measurements as edges on the graph.

3. Remember that inverse edges of known transformations are also on the
graph.

4. Identify the desired measurement as the path starting at the frame they
are in ending at the object being measured.

5. Compose the desired transformations and evaluate.

The transformations in question may be more complex than those discussed
here, such as projections or nonlinear maps, but those details only affect the
mathematical evaluation in the final step. Of course, the hardest part in any
problem is not algebraic manipulation but rather mapping from real-world de-
scriptions and constraints to diagrams, reference graphs, and equations. Thus,
in the following example, we present the problem at a very high level, using
none of the vocabulary we have developed so far, and encourage the reader to
follow steps 1 - 5 on their own, including setting up the frames and drawing the
initial reference graph. Keep in mind, the pose of “B with respect to A” is really
the “A from B” transform F 5. The phrase “relative to” is also often used to
mean the same thing, so that “tool pose relative to tracker” really means the
“tracker from tool” transformation. Translating from common vernacular used
in many problems to our more consistent vocabulary for frame transformations

12



is an important first step. It is easier to remember that the arrow always starts
at the frame of reference being provided, in these cases.

In the example, we give the problem statement, then a schematic diagram
clarifying the problem statement, then an overview of the frames and points
involved, then a reference graph describing the setup, and finally a solution.
At each step, we encourage the reader to attempt the next step on their own,
understanding that the hardest part may be translating the problem statement,
which requires understanding some medical jargon, to frames and transforms.
This is an essential skill, and the best way to acquire it is practicing problems
much like this one.

Problem 4.1. Internal pelvic trauma fixation involves the insertion of a rigid
metal rod, called a K-wire, into the pelvic bone along a specific trajectory. It
is essential to identify the correct trajectory so as to avoid “cortical breach,”
where the K-wire punches through the outer cortical bone and enters soft tissue,
leading to further complications. For this example, assume the fracture is along
the superior pubic ramus and is already shortened (aligned).

The operating room is equipped with a calibrated X-ray imaging device,
called a C-arm, with infrared reflective markers on its gantry. The calibration
provides the pose of the C-arm’s camera frame—a frame with its origin at the
center of the X-ray tube. There is a Polaris optical tracker positioned such that
it measures the pose of both the C-arm and a reference marker fixed to the
patient table.

The surgeon is wearing a HoloLens 2, an “augmented” or “mixed reality”
headset, which is capable of displaying holograms to the surgeon. The HoloLens
tracks the surgeon’s head movements using onboard sensors, relative to an esti-
mated “world” frame. The HoloLens is also capable of tracking infrared reflec-
tive markers, relative to the headset frame, but the markers must be in the field
of view. Since the surgeon is generally looking down, only the marker fixed to
the patient table can be reliably tracked by the HoloLens.

There is a machine intelligent system which is capable of automatically deter-
mining the safe corridor for K-wire insertion based on X-ray images. The input
to this system is the X-ray image, and the output is a start- and end-point for
the safe trajectory in the camera frame.

Finally, suppose we want to support the safe insertion of the K-wire by
displaying a hologram for the surgeon to align the K-wire with. The hologram
is a virtual object in the Hololens “world,” with its own coordinate frame such
that the +Z-axis should aligns with the safe trajectory (going into the body),
and the origin should be placed at the trajectory startpoint.

Virtual objects are controlled by setting their rotation and translation rel-
ative to the HoloLens “world.” What should these be set to, in terms of the
measurements provided, so as to guide the surgical alignment?

13



Solution 4.2. First, let’s talk about the hardware in this setup. In Fig. 8,
the X-ray imaging device is a Siemens C-arm with intrared markers attached
to the detector side of the gantry. The locations of these markers have already
been encoded relative to some frame, call it M. When the Polaris tracker, the
stereo camera object in the top right of the figure, measures the pose of the
C-arm, it measuring the Fpj; frame transform, where T is the tracker frame. It
doesn’t matter precisely how M is defined, because the calibration of the C-arm
provides the “C from M” transform, where C' is the “camera” frame centered
at the X-ray source. Let uw and v be the start- and endpoints of a suitable
trajectory, so uc and v are estimated by the machine learning system in the

camera frame.

Figure 8: An overview of the hardware in the problem. The C-arm is equipped
with infrared reflective markers which can be tracked, and a stable reference
marker is fixed to the patient table (blue). The Polaris tracker (orange) tracks
both the C-arm and reference marker, while the HoloLens only tracks the refer-
ence marker (since the surgeon is often looking down). The goal of the problem
is to align a holographic indicator, such as the red arrow, with a desired trajec-
tory with respect to the pelvis.

The tracker also measures the pose of a reference marker frame, call it R,
which is simultaneously tracked by the HoloLens. The reason to include this
marker is to provide a kinematic chain between the HoloLens “world” frame and
the camera-centered coordinates measured by the C-arm. Denote the frame of

14



the headset as H and the HoloLens world frame as W. Finally, denote the
frame containing the hologram as A (for arrow), and assume that the hologram
is aligned with the Z-axis.

The next step is to translate the above diagram into a more formal frame
transformation diagram, with the frames discussed. (Try first before continuing
to the next page.)

15



Fig. 9 captures the essential frames in the problem, as well as the raw mea-
surements that exist between them. Already we can see the kinematic path that
allows us to relate the virtual world of the HoloLens to the real world of the
patient.

Figure 9: A frame transform diagram showing the initial measurements in the
problem.

Often, Fig. 9 is sufficient to see the transformations that need to be com-
posed, especially once the translation to reference graphs is clear. To be explicit,
Fig. 10 shows the complete reference graph.

Now that we understand all the frames in the problem and the measurements
between them, the hard part is over. All that remains is to define Fy 4 =
[Rwa,pwa such that the origin of A is at u, and the —Z axis points in the
same direction as the v — v vector.

16



o((W.H)) =Fwn

Figure 10: The complete reference graph for the problem, with the desired path
in red.

The first step is straightforward using Theorem 3.5. We have

Pwa < uw (47)
= p(Pw—u) (48)
= FWHFHRFE}%FTMFE}WUC (49)
= Rwu, pwul[Rur, PurlRrg, —R7ppre][Rea, prud[Reh, —RoyPoumuc

(50)

= [RWHRHRR;}QRTJVIRE}V[v (51)
~RwuRurR R RoyPoM (52)

+ RWHRHRR;}QPTM (53)

~ RwuRurR,PTR (54)
+RwupPHr (55)
+PwH } uc (56)
=Fwcuc (57)
= Rwcuc + pwc (58)

Similarly, we note viy = Fyyove.

Next, all that remains is to ensure the hologram’s rotation aligns with u — v.
This can be done by answering the question, “what is the rotation that aligns
[0,0,1]7 with uy — viy?” This question can be answered using Rodrigues’s

17



formula and the vector-angle formulation of rotations, which we will state but
not explore in much detail. Briefly, Rodrigues’s formula Rot(w,#) takes the
vector w about which the rotation occurs and the angle 6, and returns the
corresponding rotation matrix. Here, w must be perpendicular to both vectors,
which we can obtain with the cross product:

X (uW — Vw) (59)

g
Il
—_ o O

Note that Rodriguez’s formula does not take into account the magnitude of this
vector, only its direction.
The angle 6 is given by

0
cosf = [0] - W YW _ (60)
1| Nhaw = vl
Thus
Rwa + Rot(w, ) (61)
=T+ (sinf) sk(W) + (1 — cos ) sk(W)? (62)

where sk(w) is the skew matrix of w.

5 Conclusion

In this tutorial, you learned how to take a description of a tracking system, such
as those used in surgical navigation, and extract desired information. As you
may have figured out, this is a pretty simple process once you have a consistent
notation and vocabulary for discussing transformations, although the algebra
can become tedious if done by hand. Fortunately software packages like tf2
in ROS or pytransform3d in Python/Numpy allow users to manage the frame
transform graph and request transforms between frames automatically.

The next step, which we will discuss in future tutorials, is understanding
how the potential error in each measurement, from the point itself to every
transformation in between, affects the end result.
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